An Efficient Local Search for the Constrained Symmetric Latin Square Construction Problem
نویسنده
چکیده
A Latin square is a complete assignment of [n] = {1, . . . , n} to an n × n grid such that, in each row and in each column, each value in [n] appears exactly once. A symmetric Latin square (SLS ) is a Latin square that is symmetric in the matrix sense. In what we call the constrained SLS construction (CSLSC ) problem, we are given a subset F of [n] and are asked to construct an SLS so that, whenever (i, j, k) ∈ F , the symbol k is not assigned to the cell (i, j). This paper has two contributions for this problem. One is proposal of an efficient local search algorithm for the maximization version of the problem. The maximization problem asks to fill as many cells with symbols as possible under the constraint on F . In our local search, the neighborhood is defined by p-swap, i.e., dropping exactly p symbols and then assigning any number of symbols to empty cells. For p ∈ {1, 2}, our neighborhood search algorithm finds an improved solution or concludes that no such solution exists in O(n) time. The other contribution is to show its practical value for the CSLSC problem. For randomly generated instances, our iterated local search algorithm frequently constructs a larger partial SLS than state-of-the-art solvers such as IBM ILOG CPLEX, LocalSolver and WCSP.
منابع مشابه
Iterated Local Search Algorithm for the Constrained Two-Dimensional Non-Guillotine Cutting Problem
An Iterated Local Search method for the constrained two-dimensional non-guillotine cutting problem is presented. This problem consists in cutting pieces from a large stock rectangle to maximize the total value of pieces cut. In this problem, we take into account restrictions on the number of pieces of each size required to be cut. It can be classified as 2D-SLOPP (two dimensional single large o...
متن کاملCONSTRAINED BIG BANG-BIG CRUNCH ALGORITHM FOR OPTIMAL SOLUTION OF LARGE SCALE RESERVOIR OPERATION PROBLEM
A constrained version of the Big Bang-Big Crunch algorithm for the efficient solution of the optimal reservoir operation problems is proposed in this paper. Big Bang-Big Crunch (BB-BC) algorithm is a new meta-heuristic population-based algorithm that relies on one of the theories of the evolution of universe namely, the Big Bang and Big Crunch theory. An improved formulation of the algorithm na...
متن کاملAn Efficient Local Search for Partial Latin Square Extension Problem
A partial Latin square (PLS) is a partial assignment of n symbols to an n×n grid such that, in each row and in each column, each symbol appears at most once. The partial Latin square extension problem is an NP-hard problem that asks for a largest extension of a given PLS. In this paper we propose an efficient local search for this problem. We focus on the local search such that the neighborhood...
متن کاملAn Energy-efficient Mathematical Model for the Resource-constrained Project Scheduling Problem: An Evolutionary Algorithm
In this paper, we propose an energy-efficient mathematical model for the resource-constrained project scheduling problem to optimize makespan and consumption of energy, simultaneously. In the proposed model, resources are speed-scaling machines. The problem is NP-hard in the strong sense. Therefore, a multi-objective fruit fly optimization algorithm (MOFOA) is developed. The MOFOA uses the VIKO...
متن کاملSolving multi-objective team orienteering problem with time windows using adjustment iterated local search
One of the problems tourism faces is how to make itineraries more effective and efficient. This research has solved the routing problem with the objective of maximizing the score and minimizing the time needed for the tourist’s itinerary. Maximizing the score means collecting a maximum of various kinds of score from each destination that is visited. The profits differ according to whether those...
متن کامل